Testing significance of features by lassoed principal components
نویسندگان
چکیده
منابع مشابه
Testing Significance of Features by Lassoed Principal Components By
We consider the problem of testing the significance of features in highdimensional settings. In particular, we test for differentially-expressed genes in a microarray experiment. We wish to identify genes that are associated with some type of outcome, such as survival time or cancer type. We propose a new procedure, called Lassoed Principal Components (LPC), that builds upon existing methods an...
متن کاملTesting Significance of Features by Lassoed Principal Components.
We consider the problem of testing the significance of features in high-dimensional settings. In particular, we test for differentially-expressed genes in a microarray experiment. We wish to identify genes that are associated with some type of outcome, such as survival time or cancer type. We propose a new procedure, called Lassoed Principal Components (LPC), that builds upon existing methods a...
متن کاملHockey sticks, principal components, and spurious significance
[1] The ‘‘hockey stick’’ shaped temperature reconstruction of Mann et al. (1998, 1999) has been widely applied. However it has not been previously noted in print that, prior to their principal components (PCs) analysis on tree ring networks, they carried out an unusual data transformation which strongly affects the resulting PCs. Their method, when tested on persistent red noise, nearly always ...
متن کاملOptimal Rank-based Testing for Principal Components
This paper provides parametric and rank-based optimal tests for eigenvectors and eigenvalues of covariance or scatter matrices in elliptical families. The parametric tests extend the Gaussian likelihood ratio tests of Anderson (1963) and their pseudo-Gaussian robustifications by Tyler (1981, 1983) and Davis (1977), with which their Gaussian versions are shown to coincide, asymptotically, under ...
متن کاملRepresenting Animations by Principal Components
In this paper, we present a representation for three-dimensional geometric animation sequences. Different from standard key-frame techniques, this approach is based on the determination of principal animation components and decouples the animation from the underlying geometry. The new representation supports progressive animation compression with spatial, as well as temporal, level-of-detail an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2008
ISSN: 1932-6157
DOI: 10.1214/08-aoas182